请在Chrome、Firefox等现代浏览器浏览本站。另外提供付费解决DEDE主题修改定制等技术服务,如果需要请 点击 加我 QQ 说你的需求。XML地图

前方切换“极客模式” 深度学习开发者峰会PaddlePaddle 11项重磅全盘点

NLP 采集侠 评论

迈入开源第三年,深度学习平台PaddlePaddle又发重磅升级。4月23日,由深度学习技术及应用国家工程实验室与百度联合

前方切换“极客模式” 深度学习开发者峰会PaddlePaddle 11项重磅全盘点

推荐 2019-04-24 14:02:35

迈入开源第三年,深度学习平台PaddlePaddle又发重磅升级。

4月23日,由深度学习技术及应用国家工程实验室与百度联合主办的首届WAVE SUMMIT 2019深度学习开发者峰会上,PaddlePaddle首秀全景图,并连抛11项重磅发布!

前方切换“极客模式” 深度学习开发者峰会PaddlePaddle 11项重磅全盘点

开发环节,全新发布工业级NLP开源工具集PaddleNLP,以及业界首个视频识别工具集;训练环节,展现大规模分布式训练、工业级数据处理两大特性;部署环节,首发预测服务Paddle Serving和用于模型压缩的PaddleSlim;工具方面,首发预训练模型管理工具PaddleHub、深度强化学习工具PARL重要升级、自动化网络结构设计AutoDL Design正式开源;服务方面,发布了价值一亿人民币的算力支持计划以及企业深度学习实战营。

深度学习推动人工智能进入工业大生产阶段,深度学习框架是智能时代的操作系统。从开发、训练、部署、工具到服务,PaddlePaddle展现了历经产业实践打磨的“趁手利器”所拥有的全面、稳定与高效。

一、 开发:新增NLP、视频两大模型工具集

在模型库方面,PaddlePaddle已开源 60 多个经过真实业务场景验证的官方模型,涵盖视觉、自然语言处理、推荐等 AI 核心技术领域,成为官方支持模型最多的深度学习平台。而此次,PaddlePaddle再次全新发布工业级NLP开源工具与预训练模型集PaddleNLP,以及业界首个视频识别工具集。

前方切换“极客模式” 深度学习开发者峰会PaddlePaddle 11项重磅全盘点

PaddleNLP是基于PaddlePaddle 打造的面向工业应用的中文NLP工具集,覆盖全面的中文处理任务,工业使用效果突出。PaddleNLP提供全面丰富的中文处理任务,并拥有当前业内效果最好的中文语义表示模型ERNIE和基于用户大数据训练的应用任务模型。基于PaddlePaddle深度学习框架构建的基础NLP算法模型和NLP应用任务的灵活组合,同类型算法模型可灵活插拔,真正高效易用。

前方切换“极客模式” 深度学习开发者峰会PaddlePaddle 11项重磅全盘点

此外,PaddlePaddle还发布了业界首个视频识别工具集,旨在为开发者提供解决视频理解、视频编辑、视频生成等一系列任务的便捷、高效的模型。工具集提供了适合视频任务的通用骨架代码,覆盖视频识别方向的7大主流领先模型,,包括StNet、Attention LSTM 、Attention Cluster三大帮助百度视觉团队夺得国际竞赛冠军的自研领先模型。目前,该领先的视频理解技术已在百度多项核心业务中使用,如百度 Feed 流,百度搜索,百度云 VCA 系统等,视频标签集Top5准确率达到96%,百度 Feed 流短视频分类全免人审。

二、 训练:业界最强的超大规模并行深度学习能力

前方切换“极客模式” 深度学习开发者峰会PaddlePaddle 11项重磅全盘点

训练环节,超大规模深度学习并行技术一直是PaddlePaddle的优势之一。此次大规模分布式训练主要从三方面实现了升级,首先是对多机多卡训练的的全面支持,实现了良好的可扩展性。同时发布了针对网络条件不好的情况下的稀疏通信技术,大幅降低了带宽对训练速度的影响。

其次,针对超大规模稀疏参数的挑战,设计并开放了大规模稀疏参数服务器,开发者可轻松下载相关镜像使用。基于真实的推荐场景的数据验证,PaddlePaddle 在 100 节点*10线程/节点的情况下,根据batch size的不同吞吐量可达 60 万~ 140 万 /s,每小时可处理20 ~ 50亿数据,且达到batch size为 512 的情况下90%的加速比。该系统已应用于百度feed流以及凤巢商业推广系统中,可有效地解决超大规模推荐系统、超大规模数据、自膨胀的海量特征及高频率模型迭代的问题,拥有超大吞吐量及高效率。

第三,大规模分布式训练支持在各种容器上高速运行,同时支持在K8S生态下使用PaddlePaddle进行训练。

在这种大规模数据场景下,数据的吞吐非常关键,对于数据做处理往往是一大痛点,对此,PaddlePaddle研发了数据处理组件方便开发者使用。优化分布式IO,增加远程文件系统流式读取能力。GPU多机多卡同步训练通过增加稀疏通信能力提升带宽不敏感训练能力,在低配网络带宽网络环境下,例如10G网络下,同步训练可提速10倍。

三、部署:首发预测服务Paddle Serving、用于模型压缩的PaddleSlim

开发和训练后,将模型部署到各种应用场景下是非常关键的一个步骤。部署环节需要高速的推理引擎,在此基础上,为了部署在更多的硬件上往往需要做模型压缩,在真正使用时,还需要软硬一体能力的支持。

前方切换“极客模式” 深度学习开发者峰会PaddlePaddle 11项重磅全盘点

(PaddlePaddle端到端全流程部署方案)

TAG: 警察的好文章 陆谷孙好文章 写好文章有哪些好方法 关于钢厂安全的好文章 说话难听人很好文章 可以分享的好文章 在哪里才能看到好文章 谚语开头的好文章 政协好文章 各种好文章的结尾 好文章怎么赞美 对学生有启示的好文章 关于坚持的好文章 免疫荧光 发好文章 护理新三好文章 健身好文章 适合朗诵的好文章 过年一家团聚的好文章 好文章模板 记事好文章
喜欢 (0) or 分享 (0)
发表我的评论
取消评论

表情

您的回复是我们的动力!

  • 昵称 (必填)
  • 验证码 点击我更换图片

网友最新评论